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For more information

* MWR article, just submitted:
— http://tinyurl.com/TIGGE-ref-pdf

* Online appendix, with more complete set of
figures:
— http://tinyurl.com/TIGGE-ref-app




Treating “system error” in ensembles

e System error includes errors due to model
imperfections as well as sampling error from
finite ensemble.

 May manifest itself as biased mean, under-
spread, poorly forecast higher moments.

* Treat through:
— higher resolution & other model improvements

— (physically based) stochastic parameterizations
— multi-model
— statistical post-processing




Reforecast-based
statistical post-processing

* Advantages:

— Can ameliorate systematic errors for tough forecast
problems, such as long-lead forecasts, rare events.

— Can provide highly reliable ensemble guidance,
improving user confidence.

* Disadvantages:

— Best results with long training data set (i.e.,
reforecasts), which are computationally expensive to
compute, and

— This makes NWP centers less willing to rapidly change
the model (else reforecasts differ from real-time
forecast).



Perceived multi-model
advantages and disadvantages

* Advantages:

— Basically free information; only need to have the extra
bandwidth, storage ready.

— If modeling systems relatively independent, then some
cancellation of errors, improved diversity of forecasts.
 Disadvantages:
— Not all centers yet willing to share their data in real time.

— Creates dependencies on other centers. Can they provide their
data in accordance with your timelines?

— Multiple systems that can change, not just your own. Rarely
stable for long.

— MM concept and results may not be generalizable; it may
matter specifically which models are used. Combinations of
immature models may not provide much improvement.
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Multi-model combination:
better than the best model?
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the best system, ECMWEF. Forecasts
are bias-corrected using last 30 days

of F-A differences. ECMWEF analysis used

as reference (somewhat problematic).
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4-model MM ensemble better than the
best system, ECMWEF. Poorer performing
ensemble systems drag down the MM
performance. Also: reforecast-calibrated
ECMWF competitive

courtesy of Renate Hagedorn, ECMWF & DWD. Hagedorn et al., QIRMS, submitted.



Previously, reforecast vs. multi-model, T

2m Temperature, 250 European Stations, DJF 2008/09
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ECMWEF’s forecasts were corrected here using a blend of bias correction from the past
30 days of forecasts and a more sophisticated regression approach using reforecasts.

courtesy of Renate Hagedorn, ECMWF & DWD. Hagedorn et al., Q RMS, submitted.



Hypothesis

* Reforecast-based calibration of daily
precipitation, like T, will be more skillful
than multi-model forecasts of precipitation,
with or without multi-model calibration using

a short training data set.



Probabilistic forecasts to be compared

(perturbed members, no control)
Jul = Oct 2010 over CONUS, 00Z only

NCEP operational, 20 members, T190L28.
ECMWEF operational, , T639L62.
UK Met Office, 20 members.

CMC, 20 members.

Multi-model (80 members).

Multi-model calibrated using prior 30 days of forecasts/
analyses (more detail later).

ECMWEF with reforecast calibration (more detail later).



Precipitation verification
data set

Use NCEP/EMC “CCPA” dataset of Stage-IV
precipitation, regression-corrected to CPC analysis
over CONUS, and upscaled to 1-degree. Described in
Luo et al. (2010).

— some points in western US where regression correction
fails due to lack of data. Substitute upscaled Stage-IV for
those points

Verify only where 1-degree box is within CONUS
(conterminous US).

Verify 24-h accumulations.
Verify dates from 00Z 1 July 2010 to 00Z 31 Oct 2010.



ECMWYF’s reforecast data set

Once weekly (1 Jan, 8 Jan, 15 Jan, etc.) 5-member
ensemble, control + 4 perturbed.

Past 18 years; we use only 2002-2009

Control = ERA-Interim reanalysis (using slightly out-of-
date 4D-Var and older forecast model version).

Perturbed from combination of 2010’s perturbed-obs
4D-Var perturbations (not flow dependent) + singular
vectors appropriate to the past date.

Uses same forecast model as is used for operational
EPS system.



Post-processing method:
“extended” logistic regression

* Follows Wilks’ (2009, Met Apps) approach to provide
full probability distribution.

exp| by, + b X" + b X 0" +b,T"" |
1+exp[b0+b1x +b X0 08+b2T0'4]

P(obs > T) =

* Train on 2002-2009 data only, since that’s the period
when precipitation analyses available
— Thus, can’t fully use 18-year ECMWF weekly 5-member
reforecast.

— Augment samples using 25 nearby grid points with similar
analysis CDFs, especially at the high amounts.



Example of supplementary
training data locations
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Primary verification techniques

e Brier skill scores and CRPSS

— Calculated in manner to avoid skill overestimate
following Hamill and Juras, Q/JRMS, Oct 2006.

— Details in supplementary slides and in article,
http://tinyurl.com/TIGGE-ref-pdf

* Reliability diagrams

* Confidence intervals via paired block bootstrap
following Hamill, WAF, 1999.



Results directly from

ensemble systems,

no post-processing,
no multi-model
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Skill scores of
various 20-member
ensembles

5th and 95t percentiles using
block bootstrap algorithm
following Hamill, WAF, 1999.

ECMWEF generally the most skillful,

though CMC makes similarly skillful
10-mm forecasts.

NCEP and UKMO trail.



CRPSS geographical distributions

(a) ECMWF CRPSS Day +3
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(a) Day +3 RMS error
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Errors tend to be small when
probabilities are small; likely most
observed events are light
precipitation.

Note large over-forecast bias of
UKMO for the climatologically dry
areas. This is responsible for
UKMO’s negative CRPSS in dry
regions.
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ECMWF Day +3
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24 h! area.
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Multi-model &
reforecast-calibration
results



(a) Analyzed precipitation 00 UTC 2010/07 /21
T U ~

(b) ECMWF 10—mm day +3 forecast
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Example:
where
multi-model
won’t help.

Positional biases are
similar in all the models;
each is too far north.
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(a) Analyzed precipitation 00 UTC 2010/08/11
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Example:
where
multi-model
should help.

Positional biases are
different; NCEP south,
ECMWEF north.
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Notes:

(1) Impressive skills of multi-model.
(2) Reforecast doesn’t improve the 1-
mm forecasts much, improves the
10-mm forecasts a lot.

(3) Calibration of multi-model using
prior 30 days of forecasts doesn’t
add much overall.
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Observed Frequency (%)
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CRPSS geographical distributions

(a) ECMWF CRPSS Day +3
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(a) Multi—-model CRPSS, day +3

S U
5

Geographic
distribution
of CRPSS

At this lead, multi-model calibration hurts at least
as much as it helps. Small training data size.

Reforecast seems to have a large impact in improving
forecasts in dry areas of western US.




Observed Frequency (%)

Reliability, Day +3 1.0mm
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Multi-model slightly under-forecasts probabilities at 1.0 mm
and is quite reliable. It is also substantially sharper than
reforecast-calibrated, which has slightly greater under-forecast bias.
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Multi-model slightly over-forecasts probabilities, and is substantially
sharper. Reforecast calibrated slightly under-forecasts and is less sharp.



Multi—Model Day
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The most notable
thing here is that the
area covered by 50%
is much smaller;
reforecast calibration
decreases sharpness.
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Forecast example: 21 July 2010

(a) Analyzed precipitation, 00 UTC 2010/07 /21 (b) ECMWF 10—mm day +3 forecast

k g

!

40 o0y, 79y 90
Probability (%)

100

\ | | - 4} A
1 2.5 S 10 25 50
Analyzed precipitation amount (mm)
(¢) Multi—-model 10—mm day +3 forecast (d) ECMWF /reforecast 10—mm day +3 forecast

fee I S
. = \K\L% — e

desirable reduction of probabilities outside
region where > 10 mm occurred.

)

_j\

AN 7 AN
I

40 0oty F9) 90 100 35
Probability (%)

40 0o00,, P9 90
Probability (%)

100




Forecast example: 11 August 2010

(a) Analyzed precipitation, 00 UTC 2010/08/11 (b) ECMWF 10—mm day +3 forecast
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Question

* Does the assumption of consistent forecast error
statistics in reforecast and real-time hold here? Is
the under-forecasting here because reforecasts used
in training were worse than real-time forecasts?
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Accuracy of short-term forecasts from
various ECMWEF analyses

* |f real climate or model-error statistics change significantly during reforecast
period, decreased accuracy of post-processed estimates. Here, forecast error
in past larger than for real-time forecasts.

(a) o Short-term forecast fit to radiosondes
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Are 2010 ECMWEF real-time forecasts

more accurate than older reforecasts?

Relative frequency
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Reforecast calibration after training
data relaxed slightly toward analyses

Reliability, Day +3 10.0mm
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Here, for the older reforecasts, the reforecast training data was (arbitrarily) nudged slightly
toward the analysis, to simulate 2010 data. 10 % nudging for 2002 data, 7% nudging

for 2009 data.

Result: slightly more reliable & less sharp at highest probability, but no overall gain in skill.



Change of topics:
update on GEFS reforecasts

Recall we’re doing a 30-year, once-daily, 11
member reforecast using 2012 GEFS system and
saving a lot more of the data than we did for
the reforecast with the 1998 model.



GEFS reforecast status report

Control
— all 00Z reforecasts 1979-2009 done to 16 days lead.
— all 12Z reforecasts 1979-2009 done to 8 days lead.
Perturbed initial conditions generated (ETR)

11 years of week-1 reforecasts complete; estimate complete by late
Nov 2011

0 years of week-2 reforecasts complete; estimate complete by early
2012

170 TB archival system in place at ESRL
— all 00Z control runs transferred to ESRL
— ~3 years of the 10-member ensemble transferred to ESRL

Just starting development of software to serve out the reforecast
data conveniently to you (http, ftp, openDAP).



Conclusions

Hypothesis not confirmed; as opposed to T, multi-model slightly better
than reforecast, except for heavier precipitation.

— Reforecast more reliable, multi-model sharper.
Reforecast limitations here:

— Post-processing based on 2002-2009 data only, constrained by
observational availability.

— ECMWHF's reforecast data set shown to be non-homogeneous, with
larger errors in past than for real-time data.

— More complicated post-processing techniques not tried (yet).

Gain in skill from post-processing ECMWF with reforecasts much larger
than gain in multi-model using short training data set, especially for 10-
mm forecasts. lllustration of the power of the large sample size that
reforecasts afford.

Will push, via THORPEX, for more real-time data sharing.

GEFS reforecast available soon, consistent with your 2012 configuration.
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Verification details

 Brier skill scores
e CRPSS
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Calculation of climatological
probabilities for BSS reference

* Based on climatology of EMC CCPA product,
2002-2009. 1-degree analyses
— CCPA attempts to make the Stage-IV radar/obs

blended product look similar statistically to purely
gage product, via regression analysis.

— In some dry areas CCPA (regression-based) approach
does not have enough data to work properly. There,
replace with Stage-IV data.

* Climatological probabilities determined
separately for each month.



1-=mm climatological probability,
relative frequency Jul

Climatological probability of
>1 mm/24h and 10mm/24h

July
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1-=mm climatological probability,
relative frequency Aug

Climatological probability of
>1 mm/24h and 10mm/24h

August
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1-=mm climatological probability,
relative frequency Sep

Climatological probability of
>1 mm/24h and 10mm/24h

September
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1-=mm climatological probability,
relative frequency Oct

Climatological probability of
>1 mm/24h and 10mm/24h

October
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Brier score and skill score
(conventional method)

] & ’
BS, :_Z()’i _Oz)
n-
BS,
BSS=10-
BS

cl

My past research has discussed how this can over-estimate forecast skill (Hamill and
Juras, October 2006 QJRMS).



My calculation of Brier skill scores

General idea is to compute BSS as average of BSS over a set of locations/times
(“classes”) that have more similar climatological probabilities. This minimizes
problem of over-forecasting skill. Here | use 6 classes.

BS/! = [bsfl bsfl] matrix of Brier scores for forecast model f1, where bs/'
1 9 o0y 6
was a ny—dimensional (= 123, the number of case days here)

column vector of average Brier scores for the points in the it class
and for forecast model f1.

— 1 — 1 — i
bs = |:bSl senes bs6} The average over the 123 case days

— 11

Sk
BSS = Z
1 O bSk




Climatological probabilities and class

(a) 1—=mm climatological probcblll’ry for Sep (b) 1—mm climatological classes for Sep
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Computation of CRPSS

s=1,..,n4%xn samples (# days * # grid pts)

q.= I:qls, el Clﬁo] be the 20-dimensional vector of the precipitation quantiles
’ associated with the 2.5, 7.5%, ..., 97.5% percentiles of the

climatological CDF for that point and that month for the st
sample.

CRPS, = > eos(9,) 3, 005 F(g,)-0" (4:)]

> cos(9,)

vy represents the forecast’s CDF for the st
F (ql'q) sample evaluated at the g;, quantile

O’ (qfq) same but for observed

P, is the latitude of the grid box

CRPSS =1. - CRPSf/ CRPS,



